25th Spring Conference on Computer Graphics

Physically Based Animation of Sea Anemones in Real-Time José Juan Aliaga **Caroline Larboulette Universidad Polytecnica de Madrid Universidad Rey Juan Carlos**

Motivation

- Sea Anemones :
 - Important component of seascapes
 - Made of two parts: foot and tentacles
 - Interact with the surrounding fluid
 - Interact with other entities (fish)
- Lack of real-time technique (virtual environment, video games)
- Aim: propose a real-time technique, physically based, with high level control

Sea Anemones in Nature

- Come in many shapes, sizes, colors
- Composed of a foot attached to the rock / sand of constant volume
- Tentacles attached atop arranged in cycle (spiral phyllotaxis)
 - Defense mechanism, trap
 - React to fish

SCCG'09

Sea Anemones in Nature

- Come in many shapes, sizes, colors
- Composed of a foot attached to the rock / sand of constant volume
- Tentacles attached atop arranged in cycle (spiral phyllotaxis)
- Stay in place for days, months, swaying in the fluid, reacting to fish

Outline

- Related work
- Overview of our technique
- Fluid description
- Anemone model
- Deformation of fibers
- Results
- Conclusion & Future Work

Related Work

- Modeling of the *Stromphia Coccinea* [Liang 01]
 - Implicit Surfaces (Blob Tree [Wyvill 99])
 - Prohibitive rendering times
 - Tentacles implantation using a phyllotaxis model
- Animation as a reaction to the starfish [Nur 01]
 - Focuses on the general behavior
 - Deformation of foot and tentacles keyframed

SCCG'09

Related Work (2)

- Animation of grass blades using and internal skeleton deformed by
 - IK-like techniques [Bakay 02, Ota 04]
 - Blending of pre-computed key poses [Perbet 01, Endo 03]
 - ⇒ Manual specification / keyframing of the deformation of individual fibers
- Animation of trees using procedural stochastic techniques [Stam 97]

 \Rightarrow Interaction with entities such as fish difficult

Related Work (3)

- Animation of branches using physically based techniques [Giacomo 01, Akagi 06]
 - Fluid discretized
 - No high-level control by keyframe
- Continuous fluid flows
 - Motion paths [Wejchert 91]
 - Static hair shape modeling [Hadap 00]

Overview of Technique

- Fluid environment : continuous 3D vector field composed of singularities
 - Self-collisions or collisions with fish/anemones reduced
- Fish are associated fluid singularities

SCCG'09

Overview of Technique

- Fluid environment : continuous 3D vector field composed of singularities
- Fish are associated fluid singularities
- Anemone tentacles represented as skeletons (chains) covered with a skin
 - Fluid forces concentrate on skeleton nodes
 - Skeleton bends towards equilibrium
 - Dynamic approach
 - Node displacement induces moments down

Outline

- Related work
- Overview of our technique
- Fluid description
- Anemone model
- Deformation of fibers
- Results
- Conclusion & Future Work

SCCG'09

Fluid Description

 3D vector field composed of 4 types of singularities

Source Hole Vortex Directional

Singularities

- Source and Sink (Hole)
 - Intensity depends on the distance (local -- ϕ max limits influence)
 - Opposite
 - To model water and fish

Singularities

- Whirlwind (Vortex)
 - Local + rotation
- Directional Field
 - Global

- Intensity can vary over time: sine or cosine function to obtain waves
- To model currents

$$\mathbf{D}(\mathbf{p}) = \mathbf{\Phi}(\mathbf{p}, t) . \vec{v}$$

SCCG'09

Caroline Larboulette

 \rightarrow

Singularities Effect

- Green: Source
- Red: Sink
- Yellow: Vortex

Caroline Larboulette

15

SCCG'09

Outline

- Related work
- Overview of our technique
- Fluid description
- Anemone model
- Deformation of fibers
- Results
- Conclusion & Future Work

SCCG'09

Anemone Model

- Foot : a large fiber
- Tentacles on top : many fibers arranged using a collision-based simulation of phyllotaxis [Fowler 92]

Fiber Model

- Generalized cylinder around a skeleton
- Defined by varying radii at nodes

Textures

- Created by hand, applied automatically
- 4 species of anemones

Anthopleura xanthogrammica

Actinia fragacea

SCCG'09

Textures

- Created by hand, applied automatically
- 4 species of anemones

Stomphia coccinea

Anthothoe chilensis

SCCG'09

Outline

- Related work
- Overview of our technique
- Fluid description
- Anemone model
- Deformation of fibers
- Results

Conclusion & Future Work

SCCG'09

Node Chain

- N₀ to N_{top}
- N₀ is anchored to the foot

SCCG'09

Caroline Larboulette

N_{top}

Deformation of the chain

- For each node
 - 1. Get net force from singularities
 - 2. Compute node displacement
 - 3. Transmit moment down the chain

SCCG'09

1. Net Force from Field

Forces Analysis

- $\mathbf{F} = \mathbf{F}_{\mathsf{L}} + \mathbf{F}_{\mathsf{T}}$
- F_L propagated to N_i
- F_T: node is displaced towards equilibrium
- Moment induced by node displacement is propagated to N_i

SCCG'09

2. Node Displacement

- Elastic force gives a bending angle
- *k_i* : stiffness at node
 Ni

$$k_i = r_i^n K_{material}$$

• Moment generated:

 $\mathbf{F}_{\mathbf{M}}(N_{i-1}) = \frac{M(N_i)}{L_{i-1}} \cdot \frac{\vec{N_{i-1}N_{i-2}} \times \mathbf{M}(N_i)}{||N_{i-1}N_{i-2} \times \mathbf{M}(N_i)||}$

SCCG'09

3. Propagation Moments and Forces

 $\mathbf{F}(N_i) = A.\mathbf{V}(N_i) + \mathbf{F}_{\mathbf{L}}(N_{i+1}) + \mathbf{F}_{\mathbf{M}}(N_i)$

SCCG'09

Force vs Moment

Outline

- Related work
- Overview of our technique
- Fluid description
- Anemone model
- Deformation of fibers
- Results

Conclusion & Future Work

SCCG'09

Singularity Keyframing

Position Keyframing (singularity attached to fish)

SCCG'09

Singularity Keyframing

 Intensity Keyframing (can vary from Source to Sink)

33

Bounding Volumes

- BV to speed up computations
- Local singularities do not need to be evaluated
 Video:
 36 anemones
 14760 nodes
- 17fps

SCCG'09

Bounding Volumes

SCCG'09

Seascape

- 4 kinds of anemones
- 2 types of fish
- Seagrasses

SCCG'09

Seascape video

SCCG'09

Seagrasses videos

SCCG'09

More fibers

- Gravity force
- Fibers interpolated

Conclusion

- Physically based animation of anemones tentacles
- Real-Time (video games)
- GPU compatible
- Collision detection reduced
- Can be used for other types of plants
- High-level keyframing (fish)

SCCG'09

Future Work

- GPU implementation
- Improve the foot of the anemone
- Create parameters reference table for
 - Different kinds of anemones
 - Other types of plants
- Add some behavioral movement
- Perceptual study to show the impact of our simplifications
- Extend the algorithm for hair

Thanks !!! Questions ?

 Work partially supported by the Spanish Ministery of Education and Science (grant TIN2007-67188)

SCCG'09