Computer Animation Curriculum : An Interdisciplinary Approach

Caroline Larboulette Universidad Rey Juan Carlos

Universidad Rey Juan Carlos

Motivation

- Teaching separated into
 - Computer Science degrees
 - Techniques, programming
 - Math, physics
 - Art degrees
 - Use of animation software
 - Creation of meaningful images / movies

Eurographics, 1st April'09

Motivation

- Not always adapted to labor market
 - Researchers need to create models / animations
 - Programmers have to work with artists
 - Artists need to manipulate scripts
 - Technical directors are in-between

Context

- Master in Computer Graphics, Video Games and Virtual Reality
- Intended for Computer Science students
- They pursue career in
 - Movie / 3d animation companies
 - Game industry
 - Research

We thus also teach software use (Maya) Level of involvement is left to the student through the semester project

Eurographics, 1st April'09

Interdisciplinarity

- Benefits at several levels
 - Industry : communication between artists and engineers improved
 - Research: researcher independency
 - Personal : satisfaction of creating a finished product (movie)

Outline

- 1. Bologna & Knowledge Base
- 2. Course Content
- 3. Student Evaluation
 - 1. Homework & Quizzes
 - 2. Semester Project
- 4. Lecture Evaluation
- 5. Conclusion and Perspectives

Eurographics, 1st April'09

Outline

- 1. Bologna & Knowledge Base
- 2. Course Content
- 3. Students Evaluation
 - 1. Homework & Quizzes
 - 2. Semester Project
- 4. Lecture Evaluation
- 5. Conclusion and Perspectives

Eurographics, 1st April'09

Bologna Process

- Requirements for graduate studies
 - Mobility of students and faculty
 - Teaching in English
 - ECTS credit system
 - Lectures should be 5 ECTS
 - Computer Animation is 2.5 ECTS (can be combined with another half lecture like History of Animation)
 - Course content and mobility
 - Sharing of content among European universities

Knowledge Base

- Professional Issues
 - Interdisciplinarity favors communication and improves team work
 - Semester project: team work, ethics and intellectual property
- Course content for Animation
 - Time and motion, modeling, rendering, dynamics and procedural animation
 - Character specifics are not covered

Eurographics, 1st April'09

About our Lecture

- 2.5 ECTS
- Corresponds to Animation I
- English language
- Interdisciplinarity
 - Computer science
 - Software use
- Free specialization (semester project)

Eurographics, 1st April'09

Outline

1. Bologna & Knowledge Base

2. Course Content

- 3. Students Evaluation
 - 1. Homework & Quizzes
 - 2. Semester Project
- 4. Lecture Evaluation
- 5. Conclusion and Perspectives

Eurographics, 1st April'09

Introduction

Eurographics, 1st April'09

- Introduction
- 5 topics that introduce basic notions
 - Representation of surfaces
 - Modeling
 - Geometry based deformation techniques
 - Physics based techniques
 - Collision detection

Eurographics, 1st April'09

- Introduction
- 5 topics that introduce basic notions
- 2 topics that show the use of the basic techniques in different contexts
 - Introduction to character animation (MDP - Character Animation lecture)
 - Introduction to plant modeling and animation

Eurographics, 1st April'09

- Introduction
- 5 topics that introduce basic notions
- 2 topics that show the use of the basic techniques in different contexts
- Does not cover
 - Fluid animation & advanced physically based animation (AA)
 - But, if more time available ... introduction to natural phenomena or fluid animation

Eurographics, 1st April'09

1. Introduction

- Theory
 - Animation pipeline
 - (modeling, animation, rendering)
 - Loops frequency
 - Notion of real-time

```
class Particle
{
  public :
    Particle();
```

```
void init();
void draw();
void animate();
```

```
private :
    qglviewer::Vec speed_, pos_;
    int age_, ageMax_;
};
```

```
class Viewer : public QGLViewer
{
  protected :
    virtual void draw();
    virtual void init();
    virtual void animate();
    virtual QString helpString() const;
```

16

```
private:
    int nbPart_;
    Particle* particle_;
};
```

Eurographics, 1st April'09

1. Introduction

- Practice
 - How to create an animation in Maya
 - Timeline
 - Keyframes
 - Animation framerate
 - Animation curves editing (Graph Editor)

Eurographics, 1st April'09

 Theory: how is a surface mathematically represented ?
 – Polygonal surfaces

ax + by + cz + d = 0

Eurographics, 1st April'09

- Theory: how is a surface mathematically represented ?
 - Parametric curves & surfaces
 - Properties (locality, continuity ...)
 - Patch stitching, hierarchical splines

 Theory: how is a surface mathematically represented?

Subdivision surfaces & masks

-1/16,

Maillages triangulaires 1/8

-1/16

Eurographics, 1st April'09

- Theory: how is a surface mathematically represented ?
 - Implicit surfaces $f(x,y,z) = \frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2}$
 - Blob tree, volume conservation

- Theory
 - Discussion about pros and cons
 - How many points to be moved to create/deform the surface ?
 - Efficiency/controllability of deformation
 - Cost/accuracy of collision detection
 - Volume conservation
 - Rendering times

Eurographics, 1st April'09

- Practice
 - We create objects with the different types of surfaces
 - We show the differences wrt number of control points, smoothness ...

Eurographics, 1st April'09

- Practice
 - We show how to create a simple polygonal object (fish)

Eurographics, 1st April'09

3. Modeling Techniques

Theory & Pratice
 – Revolve

 $egin{aligned} x(heta,t) &= r(t)\cos heta\ y(heta,t) &= r(t)\sin heta\ z(heta,t) &= C(t) \end{aligned}$

Eurographics, 1st April'09

3. Modeling Techniques

• Theory & Pratice – Revolve, Extrude

Eurographics, 1st April'09

Caroline Larboulette

 $P_{new} = P + \vec{n} * l$

3. Modeling Techniques

Theory & Pratice

 Revolve, Extrude, Loft, Sweep

Eurographics, 1st April'09

4. Geometrically Based Deformation Techniques

- Theory
 - Keyshape interpolation
 - Warping
 - Global Deformations
 - Scaling, tapering, bending, twisting
 - Free Form Deformations

Eurographics, 1st April'09

4. Geometrically Based Deformation Techniques

- Practice
 - Assignment: create a short animation using any of the techniques on an object
 - http://gmrv.escet.urjc.es/~zabador/APOs pring08/APO08_videos.html

5. Physically Based Deformation Techniques

- Theory
 - Some physics (elasticity, newton laws ...)
 - Mass-Spring model
 - Numerical Integration (Euler, Runge-Kutta) $f_{1\rightarrow 2} = -f_{2\rightarrow 1}$

Caroline Larboulette

f1

f2

v(t+dt) = v(t) + a(t) * dtp(t+dt) = p(t) + v(t) * dt

Eurographics, 1st April'09

5. Physically Based Deformation Techniques

- Practice
 - Implementation of a mass-spring model
 - (C++ openGL / Maya)
 - Maya mass-spring system
 - Maya nCloth

6. Collision Detection

- Theory
 - Distance computations
 - BVH
 - Penalty method
- Practice
 - Maya nCloth with Passive objects

- Theory
 - Structure of an articulated character
 - Skeleton, skin

Eurographics, 1st April'09

- Theory
 - Structure of an articulated character
 - Skeleton, skin
 - Rigging
 - Rigid Skinning

 $p_{v_i} = T_f . p_{0v_i}$

Eurographics, 1st April'09

- Theory
 - Structure of an articulated character
 - Skeleton, skin
 - Rigging

n

- Rigid Skinning
- Smooth Skinning

$$p_{v_i} = (\sum_{f=0}^{n} w_{if}.T_f).p_{0v_i}$$

Eurographics, 1st April'09

Caroline Larboulette

35

- Theory
 - Structure of an articulated character
 - Skeleton, skin
 - Rigging
 - Rigid Skinning
 - Smooth Skinning
 - Comparison

Eurographics, 1st April'09

Caroline Larboulette

36

- Theory
 - Structure of an articulated character
 - Skeleton, skin
 - Rigging
 - Rigid Skinning
 - Smooth Skinning
 - Comparison
 - Problems

37

Eurographics, 1st April'09

- Practice
 - Rigid & smooth skinning in Maya
 - Paint Skin Weights Tool
- Assignment

Create a simple character, a smooth skinning and paint the weights

http://gmrv.escet.urjc.es/~zabador/APOs pring08/APO08_videos.html

Eurographics, 1st April'09

8. Plants

- Theory
 - Some vocabulary (stem, bud ...)
 - L-systems
 - Non-deterministic, Stochastic Parametric, Timed

- Plants representations / animations
 - Polygonal models with skinning
 - Physics based techniques ...

Eurographics, 1st April'09

8. Plants

- Practice
 - How to use L-system to create actual plants
 - Maya fur

Eurographics, 1st April'09

Outline

- 1. Bologna & Knowledge Base
- 2. Course Content
- 3. Students Evaluation
 - 1. Homework & Quizzes
 - 2. Semester Project
- 4. Lecture Evaluation
- 5. Conclusion and Perspectives

Eurographics, 1st April'09

Homework & Quizzes

- Quizzes
 - Aim : make the students read the course notes before each class
 - 10% of the grade
- Homework
 - Aim : make the students experiment with Maya or work on some problems
 - 10% of the grade
- Another 30% for the final exam and 50% for the semester project

Eurographics, 1st April'09

Homework 1

- Relates to the different types of surfaces
- Project a point on a mesh
- Recognize spline basis functions
- Subdivide a surface patch using a mask
- Create an algorithm to deform a bouncing ball using constant volume

Eurographics, 1st April'09

Homework 2

- Relates to the use of the different geometric deformation techniques
- Makes the students use Maya

Homework 3

- First part deals with numerical integration by hand of a simple function using different schemes
- Second part deals with the use of Maya to create a simple skinned character

• Students need to create teams (2 people if possible)

Eurographics, 1st April'09

- Students need to create teams (2 people if possible)
- Team decides on the project (project proposal)
 - Context is animation of deformable objects
 - Can be a programming / scripting project
 - Can be an animation movie (in which case, it needs to tell a story)
 - Proposal includes a timetable and how the work is shared among students

Eurographics, 1st April'09

- Students need to create teams (2 people if possible)
- Team decides on the project (project proposal)
- They have about 1.5 months to work

- Students need to create teams (2 people if possible)
- Team decides on the project (project proposal)
- They have about 1.5 months to work
- They submit a project report and video/source code/Maya files ... by a deadline

Eurographics, 1st April'09

22 students

- 11 chose a programming project
- 6 worked on a movie
- 3 used scripting to create a movie
- 1 developed scripts in Maya
- 1 devoloped a video game
- 1 project ended up in a research paper [SCCG 09]

Eurographics, 1st April'09

Outline

- 1. Bologna & Knowledge Base
- 2. Course Content
- 3. Students Evaluation
 - 1. Homework & Quizzes
 - 2. Semester Project
- 4. Lecture Evaluation
- 5. Conclusion and Perspectives

Eurographics, 1st April'09

Lecture Evaluation

- Evaluation by the students through an anonymous form
- Homework and quizzes
 - No complain
 - 17% enjoyed it
 - Well-balanced between theory and Maya

Lecture Evaluation

- English language
 - 39% complained (but half of them took the test in English)
 - 1 student was happy
 - All of them agreed it was a good thing
 - Improves students mobility
 - Prepares to read scientific papers
 - Except 2, they liked writing the project report in English
 - One of them is considering to now write his Master's thesis in English

Eurographics, 1st April'09

Lecture Evaluation

- Content
 - Interdisciplinarity was a success
 - Videos and Maya examples helped to understand the theory
 - Corresponded to students expectations
- Duration
 - Not enough credits
 - Not enough time wrt the content

Eurographics, 1st April'09

Conclusion

- Out of 28 registered students
 - 22 came to class
 - 20 took the character animation class this semester (in English too)
- Homework improved the knowledge acquisition
- Semester projects gave good results

Eurographics, 1st April'09

Perspectives

- Develop better course notes -- book
- Continue to share content and share students

Thank you !

And thanks to the students who attended the class and actively participated !

Questions?

Eurographics, 1st April'09