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Figure 1: Clusters and corresponding marker sets automatically determined by applying our K-means clustering algorithm (with K = 30
clusters) on the range-of-motion sequences of actors A (a,a’), B (b,b’), C (c,c’), D(d,d’) and combined sequences of actors B+C+D (e,e’).

Abstract

We seek to determine an optimal set of markers for marker-based
facial motion capture and animation control. The problem is ad-
dressed in two different ways: on the one hand, different sets of
empirical markers classically used in computer animation are eval-
uated; on the other hand, a clustering method that automatically
determines optimal marker sets is proposed and compared with the
empirical marker sets. To evaluate the quality of a set of mark-
ers, we use a blendshape-based synthesis technique that learns the
mapping between marker positions and blendshape weights, and
we calculate the reconstruction error of various animated sequences
created from the considered set of markers in comparison to ground
truth data. Our results show that the clustering method outperforms
the heuristic approach.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation;

Keywords: Facial animation, clustering, K-means, Gaussian Pro-
cess regression

1 Introduction

The animation of virtual characters has numerous applications,
from entertainment such as video games or movies, to other seri-
ous game applications involving interaction with avatars for com-
munication or education purposes. To make these avatars appear
more attractive and realistic, special care must be taken at several
levels of animation, e. g., behavior, body and hand movement, and
facial animation. Using captured motion on real actors provides
the ability to animate virtual characters with credible behavior and
thus reinforce their comprehension and acceptability. Furthermore,
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data-driven approaches go beyond the production of realistic an-
imations: they allow for a detailed analysis that might help to ex-
tract and understand some relevant key postures and dynamical fea-
tures, and make possible the use of pre-recorded motion, through
editing and synthesis operations. However, this approach is still
challenging the computer animation community, in particular for
multi-channel animation involving the simultaneous control of fa-
cial expression, hand and body movements in expressive or linguis-
tic tasks. In this paper we focus on expressive facial animation with
the aim to further linguistically edit our data within a concatenative
synthesis framework dedicated to virtual signers [Gibet et al. 2011].

There are two possibilities to capture facial motion: either marker-
based or markerless techniques. Different reasons may be argued to
prefer one over the other solution. As our future aim is to animate
signing avatars through motion capture, our application requires to
capture full-body movements, including body and hand motion, fa-
cial expression and gaze direction. In this particular case, marker-
based motion capture (MoCap) is necessary because the different
body channels need to be captured simultaneously, each channel
conveying a specific meaning.

One challenge in facial marker-based motion capture is the choice
of the marker layout. Numerous empirical facial MoCap layouts
have already been proposed to capture facial expressions and con-
trol facial animation systems. However little work has been done to
determine and evaluate the best marker set for motion acquisition
and animation.

In this paper, we propose a method to compute an optimized marker
set for facial motion acquisition and synthesis control. Our aim is
not so much to produce animations with high accuracy and realism
as this is done in [Le et al. 2013], but to be able to easily capture
new sequences of facial and full-body motions, avoiding as much
as possible the intervention of skilled animators. That is why we
seek the best trade-off between complexity (we try to minimize the
number of markers required) and the quality of the produced an-
imation (which should best render the facial expressiveness). In
addition we want to remain as independent as possible of the syn-
thesis method to facilitate the reutilization of the corpus in different
contexts. We propose a dual heuristic / automated approach: after
analyzing the capability of different empirical maker layouts used
in previous studies to produce credible facial animations, we auto-
matically determine marker layouts by using a clustering technique,
and evaluate these marker layouts by using the same synthesis tech-
nique.



In the remainder of the paper, we first review the related work.
Then section 3 presents the methodology we have used to create
our animations and to evaluate the efficiency of each marker set we
have tested. Section 4 presents the data set on which the algorithms
are applied. Section 5 presents the results obtained for empirical
marker sets, while section 6 defines a novel approach to automati-
cally compute optimized marker layouts and shows the correspond-
ing results. Finally section 7 concludes and proposes directions for
future work.

2 Related Work

Performance-Based Motion Capture. Marker-based facial mo-
tion capture usually consists in following the 3D positions of mark-
ers disposed on an actor’s face with a network of cameras. This
method presents the advantage of allowing a capture with a very
high frame rate (≥ 120 fps) and a good precision (≤ 1 millimeter).
However, since the number of markers that can be put on the actor’s
face is limited, this method can only output a sparse representation
of the face. So if this technique efficiently captures large scale de-
formations, it is not sufficient for fine scale details like wrinkles.

In order to get a dense and direct mesh representation of the actor’s
face, several markerless methods relying on structured light [Zhang
et al. 2008] or stereo cameras [Bradley et al. 2010] [Beeler et al.
2011] have been developed. These methods allow for the acquisi-
tion of a series of high resolution triangle meshes at 30 to 42 fps.
However these methods are more sensitive to light conditions than
the traditional marker-based motion capture techniques. Moreover,
applications that necessitate simultaneous capture of body and fa-
cial motion are incompatible with the capture conditions required
by these methods.

Marker Set Optimization. Amazingly, whereas the marker place-
ment is a decisive choice, only few studies have been dedicated to
this issue. Private companies usually exploit empirical marker lay-
outs which are often homemade. In [Le et al. 2013] a method is
proposed to automatically determine an optimal marker set, the op-
timization process relying on the minimization of the reconstruction
error from the ground truth with respect to the chosen animation
synthesis method - so that the marker set found can be optimized
for this synthesis method in particular.

The problem of marker optimization is also similar to some of the
issues related to mesh compression where the shape of the whole
mesh may be determined from a subset of its vertices [Sorkine
and Cohen-Or 2004], [Meyer and Anderson 2007], [Southern and
Zhang 2011]. Our approach is similar to [Southern and Zhang
2011] and [Sattler et al. 2005] who have experimented K-means-
based methods for mesh compression.

Animation Synthesis from Marker-Based Motion Capture. Fa-
cial animation by blendshapes from motion capture is a well-known
technique. Following this method, several facial key shapes, de-
signed most of the time by an animator, are blended to produce
appropriate facial animations. Blendshapes present the advantage
of providing both a level of abstraction and a compact represen-
tation which allows easiness of editing and retargeting to other
blendshape-based facial models. However, it is still necessary to
find a mapping between marker positions and blendshape coeffi-
cients. The quality of the animation is also dependent on the choice
of key shapes.

In [Weise et al. 2011], the authors propose a method to provide a
mesh representation of the user’s face and its corresponding blend-
shapes [Weise et al. 2008; Li et al. 2009; Li et al. 2010] from data
captured via a depth sensor camera. Then, blendshape weights are

computed by minimizing a cost function taking into account both
the geometry and the texture of the model.

Other methods such as the least squares mesh technique [Sorkine
and Cohen-Or 2004] or the thin-shell model [Le et al. 2013; Botsch
and Sorkine 2008] may be used. Both techniques are based on the
same principle: the positions of all vertices of a mesh are directly
estimated from the positions of a subset of these vertices.

In this paper, we do not focus on fine scale details but on easiness
of data acquisition and genericity. For this reason we have chosen
to rely on a blendshape animation system to compute facial defor-
mations. Moreover, we argue that the system described in [Weise
et al. 2011] is able to provide data of sufficient quality to both serve
as training data for this algorithm but also to serve as ground truth
for the evaluation of our results.

Cross-Mapping of Facial Data and Blendshape Parameters.
The process of cross-mapping MoCap data and blendshape param-
eters is not trivial as it is a one-to-many mapping due to the fact that
multiple blendshape weights combinations may lead to the same fa-
cial configuration. Traditional approaches identify pairs of MoCap
data and blendshape parameters that are carefully selected and de-
signed by the animator [Deng et al. 2006]. These pairs are then used
in a learning process that determines the selection of corresponding
blendshape parameters from new MoCap data input values. Other
current methods largely rely on radial basis functions and kernel re-
gression to achieve these steps [Cao et al. 2005; Deng et al. 2006;
Liu et al. 2008]. However, such methods have several drawbacks:
a number of localized basis functions have to be chosen prior to the
learning process, and the result is conditioned by the quality and
density of input data. Thus, noisy input often yields bad estimates,
this being known as the classical over-fitting problem.

In our work, we need to simultaneously record body, manual and
facial data at high frequency rates. Such technical difficulty may
result in noisy positions of the facial markers. Therefore, the map-
ping between motion capture data and blendshape parameters is
done via a machine learning algorithm. We consider the problem
as a Bayesian inference problem. Instead of incorporating explicit
basis functions (such as radial basis functions), we use a Gaussian
Process regression technique to describe a distribution over func-
tions that map the MoCap data and the blendshape parameters [Ras-
mussen and Williams 2005].

3 Methodology

We use two different approaches to find the best possible marker
set: an empirical approach detailed in section 5 and an automatic
clustering approach detailed in section 6. The empirical approach
evaluates different facial MoCap marker layouts that have been
used in previous work. The automatic approach takes as input
the vertex positions of the facial mesh for all of the frames of
a training sequence and computes through a clustering technique
the optimized marker layout for a given number of clusters. Both
approaches are evaluated through the same synthesis technique
that achieves the mapping from motion capture data to blendshape
weights.

3.1 Animation Synthesis

For each marker layout empirically or automatically determined,
the synthesis can be decomposed into three steps: (i) for a long se-
quence of facial animation referred as range-of-motion sequence,
we first take as training examples markers-weights pairs (Xi, Yi)
that describe the marker positions and the corresponding blend-
shape weights at each frame i; (ii) for this training data, a Gaussian



Process regression technique (GP) learns the mapping between the
MoCap data and the weights; (iii) for new MoCap test data, the
new blendshape weights are estimated from the same GP regres-
sion technique (see figure 2).

Figure 2: Animation synthesis overview.

Facial MoCap Representation. In traditional marker-based facial
motion capture, captured data can be represented by a sequence of
N facial poses over time X = (X1, ..., Xi, ..., XN )T . Each facial
pose Xi at frame i is encoded by a 3 × K dimensional vector, K
being the number of markers, and xki the 3D position of the kth

marker: Xi = (x1i , x
2
i , ..., x

K
i ).

Blendshape Representation. In blendshape animation, a mesh
is represented by a neutral shape and a set of basic deformations
of this shape, where each basic deformation applied to the neutral
shape represents a particular pose (e.g., one of the Action Units of
the Facial Animation Coding System [Ekman and Friesen 1978]).
Hence the shape Bi of the mesh at frame i is defined as a linear
combination of these basic deformations:

Bi = B0 +

L∑
l=1

wliB
l (1)

where B0 is the neutral shape, L is the number of basic deforma-
tions, Bl is the lth basic deformation and wli its associated weight.
Let Yi = (w1

i , w
2
i , ..., w

L
i ) be the vector of the L weights at frame

i. We can express the blendshape animation sequence as the vector
Y = (Y1, ..., Yi, ..., YN )T .

Animation by Gaussian Process Regression. Formally, we con-
sider a set of N observations {(Xi, Yi), i = 1...N}, where Xi
denotes the input vector (facial marker positions at frame i), and Yi
denotes the output vector (blendshape weights at frame i). In a GP
model, we make the assumption of a double stochastic process on
the distribution f and the noise εi:

Yi = f(Xi) + εi (2)

and for all the observations:

Y = f(X) + ε (3)

The Gaussian Process is defined as:

f(X) = GP (µ(X),K(X,X ′)) (4)

where µ(X) is the mean function and K(X,X ′) the covari-
ance function. Based on the set of input-output observations,
the Bayesian approach computes the posterior distribution of the
real process f using the prior and the likelihood [Rasmussen and
Williams 2005].

One major drawback prevents GP from being applied to large
datasets: the computation of the covariance matrix which is highly
costly. To overcome this limitation, we used a derived method
called Sparse Online Gaussian Process (SOGP) which combines
a sparse representation (using a smaller subset of input data) and an
online algorithm of the posterior process [Csató and Opper 2002].

3.2 Quality Measurement

To evaluate the different marker sets, we compare the animations
produced via our animation synthesis method using virtual mark-
ers with the animations produced by a reference animation system
presented in section 4 and considered as the ground truth data. The
quantitative measure of quality is based on the root mean squared
error (RMSE) calculated from the positions of the vertices of the
mesh for the ground truth data and the synthesized ones :

RMSE =

√√√√ 1

N
.

N∑
n=1

P∑
p=1

‖vpn − v̂pn‖2 (5)

where N is the number of frames, P the number of vertices, vpn the
position of the pth vertex at the nth frame, and v̂pn the position of
the same vertex at the same frame in the ground truth mesh.

RMSE results presented in this study are computed over all frames
of all test sequences performed by the concerned actor except the
range-of-motion sequence (see section 4).

3.3 Notations

In section 5, we consider two categories of empirical marker sets:
the first category, named STAR, denotes state-of-the-art marker lay-
outs that have proven to be satisfactory for target applications; the
second category, named MAN, denotes manual marker layouts man-
ually defined from a given existing marker set. In section 6, each
clustering experiment uses a marker set named K-means. More-
over, each K-means experiment is based on a range-of-motion se-
quence performed by an actor Φ. Therefore, a given marker set will
be labeled STAR, MAN, or K-means Φ, Φ representing the actor,
Φ ∈ {A,B,C,D}. It may be optionally followed by the number
of markers. Given one marker set, the corresponding synthesis can
be defined by its training sequence, applied on the range-of-motion
of actor Ψ, and its test sequence applied on the test sequences of
actor Ω. The synthesis will be labeled train Ψ, synth Ω.

4 Data Set

Since our synthesis process is based on learning algorithms, we
need to get data on which these algorithms can be first trained and
on which to rely as ground truth data to evaluate our resulting ani-
mations.

4.1 Ground Truth Data

We decided to use the Faceshift commercial software [fac 2012] as
a reference system to easily collect the data required by the learn-
ing algorithms. We chose this system for several reasons. Firstly, it
offers a flexible mesh and a set of blendshapes that match the face
of the actor. The basic blendshapes are based on key shapes from
the FACS coding system, thus producing dynamical facial anima-
tions that are quite similar to those of the human face. Moreover,
this system provides a good approximation of the large scale facial
deformations. Secondly, the technique employed by Faceshift pro-
duces pairs of selected virtual markers on the actor’s face and blend-



shape weights. This allows us to learn the mapping of the markers-
weights pairs, using our GP regression model, thus avoiding the te-
dious work of manually tuning the blendshape weights [Deng et al.
2006]. Using this system is a good way to collect a large amount of
training data with different subjects.

To simulate each marker set with Faceshift (virtual markers), each
marker has been positioned on a vertex of the actor’s mesh. The
training sequences consist of time series (about 1min30 to 2min
at 30 fps) of facial expressions performed by each actor.

For each actor, the mesh and the corresponding set of blendshapes
optimized for this actor have been computed and exported. Regard-
less of the actor, the produced facial mesh has the same number
of vertices (12021) and the same topology (connectivity matrix).
The performances are captured via a depth sensor camera and the
animations produced by Faceshift are output as the sequences Y
of blendshape weights. These sequences are considered as a fair
enough approximation of the ground truth for the purpose of this
study.

4.2 Corpus

Our corpus contains the facial expressions of four non-deaf actors
named A, B, C and D. There is one range-of-motion sequence
per actor, designed for training and normalizations goals. Each ac-
tor/tress was instructed to freely explore the deformation capability
of his/her face, making grimaces during 1min30 to 2min. The
purpose of this sequence is to capture the facial deformation space
specific to each actor. Apart from the training sequence, each actor
has performed between 25 and 30 sequences lasting from 2s to 6s
and recorded at a frequency of 30 fps. Each sequence has been per-
formed once. For each sequence, the actor was instructed to watch a
video and then mimic the facial expression he has seen. The videos
are small sentences in French Sign Language with emotional con-
tent performed by deaf people.

4.3 Preprocessing

Each sequence X (input MoCap data) of a given marker set per-
formed by a given actor is centered and scaled by respectively the
mean vector and the standard error vector computed on the training
range-of-motion sequence of this actor with the same marker set.
The positions of the virtual markers for each sequence (both train-
ing and testing) have been centered and divided by the standard
deviation of the training sequence of the corresponding actor.

5 Empirical Marker Sets

In this section, we consider the following two categories of empir-
ical marker sets: STAR and MAN. The results are presented with
respect to the notation introduced in section 3.3.

5.1 State of The Art (STAR) Marker Sets

In our first approach we have tested different known marker sets of
different sizes (see figure 3):

• MPEG4 (53 markers): the set of Facial Feature Points used in
the MPEG4 standard;

• Face Robot (35 markers): the set of markers used in the com-
mercial software Autodesk Face Robot (Softimage);

• SignCom (41 markers): the set of markers used in [Gibet et al.
2011] designed for French Sign Language (FSL) capture;

facerobot signcom mpeg4 sign3d
35 markers 41 markers 53 markers 60 markers

Figure 3: STAR marker sets.

• Sign3D (60 markers): the set of markers used in [Lefebvre-
Albaret et al. 2013] designed for FSL capture.

We have then quantified the RMSE error between the ground truth
data and the synthesized data. As shown in figure 4, this first ex-

Figure 4: RMSE of synthesis for the STAR marker sets and the
same actors in training as in testing sequences.

periment does not yield any significant quantitative results in terms
of errors. Nevertheless, the spatial placement of markers (figure 3)
is different from one marker set to another. Accordingly, errors
on the synthesized data are distributed differently along time and
space (face regions) for the various marker sets. For example (see
figure 5), data synthesized with the sign3D marker set has a higher
error rate on the eye region than the Face Robot marker set.

Figure 5: Left: RMSE with Face Robot marker set; center: RMSE
with Sign3D marker set; right: original animation sequence.

5.2 Manual (MAN) Marker Sets

In order to analyze the influence of the number of markers on the
synthesis quality, we manually established a set of manual marker
layouts. We initially took a mix of 62 markers belonging to the
STAR marker layouts, and then successively took off some markers
from it. We thus formed four marker sets of sizes 62, 46, 30 and
15 (see figure 6 (b,c,d,e)). We removed in priority the markers that
visually appeared the less useful.
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Figure 6: (a): RMSE on manual marker sets, synthesis achieved
with the same actor in training and test; (b, c, d, e): the MAN
marker sets with respectively 62, 46, 30 and 15 markers.

As expected, figure 6 (a) shows a constant decrease of the RMSE
according to the number of markers. However, beyond 35 or 40
markers, we can observe on the basis of the RMSE error computed
along the whole sequence, that the gain is not significant.

6 Automatic Determination of Marker Sets
via Unsupervised Clustering

6.1 K-means Clustering Method

The key idea is to apply a clustering technique on the vertices of a
training data set that mostly covers a large part of the human facial
expression space. Let V be the matrix that represents the sequence
of the mesh deformation where v̄pn =

vpn−µp

σp
is the normalized

position of the pth vertex at the nth frame (with µp and σp re-
spectively the mean vector and standard deviation vector of the pth

vertex over time):

V =


v̄11 · · · v̄1n · · · v̄1N
· · · · · · · · · · · ·
v̄p1 · · · v̄pn · · · v̄pN
· · · · · · · · · · · ·
v̄P1 · · · v̄Pn · · · v̄PN

 (6)

In our approach, the pth line Vp of this matrix (i.e. the whole trajec-
tory of the pth vertex along the training sequence) is considered as
an observation. The K-means algorithm aims at partitioning these
observations into K clusters Ck by iteratively assigning each ob-
servation to the nearest cluster Ck represented by its centroid mk

such as:

Ck = {V p/‖V p−mk‖ ≤ ‖V p−mk∗‖, ∀k∗ ∈ {1, ...,K}, k∗ 6= k}
(7)

We then recompute each cluster’s centroid from its assigned ver-
tices and repeat iteratively both operations until convergence. The
centroids have been randomly initialized and only vertices that are
affected by at least one blendshape are considered (4859 on 12021).

6.2 Results

We first analyze the influence of the training matrix on the qual-
ity of the markers found by the clustering K-means technique. As
illustrated in figure 7, the evolution of RMSE over the number of

Actor A Actor B

Figure 7: Influence of the training dataset on the quality of markers
found by clustering. Red: results with K-means trained on 3 actors;
blue: results for K-means trained on only one actor.

markers doesn’t change, whether the K-means is applied from a
training achieved on one actor - actor A (left) or B (right) - or on
several actors - actors B, C and D - for which the training sequences
are concatenated. Moreover, we can see that the error rapidly de-
creases with the increase of the number of markers and reaches a
minimum at about 30 markers. This preliminary analysis therefore
highlights that taking a large amount of clusters will not lead to
better results.

Nevertheless, as shown in figure 1, the regions that are determined
by the K-means algorithm are less fragmented and the marker
placement appears more symmetric when the clustering is per-
formed on training data from multiple actors. For these reasons, it
seems best to keep the marker sets automatically determined from
the combined training data of the actors B, C and D.

We also compared the performances of the marker sets obtained by
the K-means clustering technique with the empirical marker sets
STAR and MAN applied to the four actors. figure 8 shows that
the marker sets automatically determined via K-means clustering
always leads to better results than the empirical marker sets.

7 Conclusion

We presented two approaches to help in the pose of markers for fa-
cial motion capture. In a first approach we tested empirical marker
sets that have previously proven to give satisfactory results in blend-
shape animation from MoCap data. In a second approach, we used
the K-means clustering method to partition facial meshes into ge-
ometrical regions that are significant for given actors. The results,
quantified though the error between ground truth and synthesis ani-
mations, seem coherent. However, the automatic clustering method
gives better results in terms of RMSE error. After a training on
each actor, we showed in particular that it was possible, for a given
number of clusters, to determine a good partitioning of vertices that
show similar dynamics. Moreover, with a training performed over
several actors, we showed that it was possible to identify more sta-
ble regions, and therefore to deduce reliable candidates for the pose
of markers.

Nevertheless, some further investigations are required to complete
this statement. In real conditions, the installation of markers is sub-
ject to inaccuracies, especially when there are several actors with
different facial morphologies. Thus, the robustness to noise of the
marker sets determined by this method is still to be verified. Future
work that includes the use of these marker sets in real conditions
will answer this question.

Furthermore, the facial representation used for facial animation, i.e.



Actor A Actor B

Actor C Actor D

Figure 8: Comparison of RMSE between STAR, MAN and K-means
marker sets. The K-means is performed on combined range-of-
motion sequences of the actors B, C and D.

the blendshapes, is extremely compact. Hence, on the one hand, the
mapping of marker positions to the space of blendshape coefficients
is fairly trivial if we consider the abundance of training data avail-
able to us. On the other hand, the simplicity of this representation
does not allow the expression of all the subtleties of human facial
expression. For these reasons, it would be interesting to test this
approach with other animation methods which would allow us to
check the genericity of the proposed method.

The clustering approach has several limitations. Although it is inde-
pendent of the synthesis method in itself, this approach remains de-
pendent on the training data. Furthermore, being independent of the
synthesis method will not give a marker set optimized for that syn-
thesis method in particular. Finally, the K-means algorithm seeks
to minimize the intra-class variance and to maximize the inter-class
variance which leads to the creation of vertex groups that have a
similar behavior. This means that the algorithm captures in prior-
ity the major sources of deformation leaving out the more subtle
sources of deformation such as wrinkles.
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